| | Energy Sources & Conveyance | | | | | Power Plant Processes | | | | | | | | | Waste Stream Treatment & Disposal | | | | | | |-------------------------------|---|---|---|---|--|--|--|---|--|--|---|--|--|--|--|---|---|--|--|--| | Screening
Criteria | Alternative Fuel Sources | | | | | | | Cooling
Systems | Cooling Systems Alternative Combustion Syste | | | Generation Sites | | Alternative Pollution Control and Solid Waste Treatment | | | Alternative Solid Waste Disposal Methods | | | | | | Synthetic Fuels Lower Sulfur (e.g., shale oil, Coal Bed | | | | | Yellowstone | Musselshell | | | | | Alternative | Gas Turbines / | | | | Separate
Bottom Ash | Waste Rock | Off-Site Landfill for Life of | ite Landfill On-Site Landfi
r Life of for Life of | | Technical | Coal Technically feasible, however coal-fired powerplants are designed to burn specific coal. Therefore, not technically feasible using the current design. | Technically feasible, but would not be feasible under current design. It is doubtful that the source could not solely support proposed load | Methane Technically feasible, but would not be feasible under current design. Source may not be available as fuel supply after 2008 | under the current
design. There are
many gas facilities | however not feasible,
however not feasible
under current design
and for this size
facility. Design is
totally different and | River Technically feasible - a pipeline could be constructed and water rights may be available. | River Technically feasible, although there is not likely enough water consistently available from the Musselshell to make it a reasonable alternative water source. | although not enough water is likely | Technically feasible, although this would increase the amound of water needed and would result in additional water resource impacts. | | IGCC Technically feasible. | Cyclone and CFB boilers would be used to burn higher suffur coal and use smaller boilers. Three CFB units would be needed. Solid waste would increase. | Technically feasible in one of many different configurations being used around the country. | Other sites are not feasible in order to | Dewatering and treating. | Waste streams
would have to be
separated and
treated | Process would include keeping bottom ash separate from the fly ash and flu gas wastes. Disposal would be segregated. | Would need to modify Waste Rock Repository to accommodate and isolate Ash Lens | Project Would require additional permits. | Project Would likely be difficult to accommodate was disposal on-site fit the life of the proje due to limited spar available. | | Logistics | Cost would be much higher to transport coal from other mines. | There are no
conveyances
available for fuel
supply. | There are no
conveyances
available for fuel
supply. | There are no conveyances available for fuel supply. | There are no
conveyances
available for fuel
supply. | Require pipelines, pump stations, and easements | Require pipelines, pump stations, and easements | Would require
additional wells.
Woulddrawdown
local wells in the area | Would require
different design and
increase water use. | Would require
completely new
facility design. This
system would burn
more coal for same
MW output. | Would require
completely new
facilty design. | Would require
completely new
facility design. This
system would burn
more coal for same
MW output. | Would require completely new facility design. No gas lines are within the area that could supply the fuel requirements. Facility would burn more gas for same MW output. | The handling logistics of transporting coal to another site would make the plan uneconomical and therefore infeasible. | Would require adding
slurry pipeline and
pumps. | | Would not affect air
emissions. Would
require separate
handling and
segregated disposal,
thus increasing
costs. | Would need to truck
at least 20 loads of
ash to waste rock
area per day. | TSDF construction. | TSDF constructio | | Economics | Ecomonics of the facility dependent upon an abundant supply of coal in the immediate vicinity as a mine-mouth project | | Ecomonics of the facility rely upon an abundant supply in the immediate vicinity, of which there are none. | | Ecomonics of the facility are infeasible and cost prohibitive. | Would be much more expensive and would likely result in the costs being prohibitive. | Would be more expensive due to conveyance costs. Also, insufficient supplies of water would be available. | May or may not be
more expensive, but
supply is not likely to
be sufficient. | | More reasonable cost s but could not meet the expected outputs | No data, but costs
per MW output would
be expected to
substantially
increase. | No cost analyses
were performed for
these types of
designs. | No cost analyses
were performed for
these types of
designs | Other generation sites would not be as cost effective as a mine-mouth concept and would therefore be infeasible. | water supply is an | t Most economical, bu
water supply is an
issue for this project | disposal would likely | Assume costs are
similar or somewhat
higher because of
additional logistics to
coordinate waste
rock and solid waste
disposal. | Would be more expensive because of handling and transportation costs. | Would likely be mo
expensive for spec
design and handlil
to accommodate t
solid waste on-site
limited space. | | Regulatory
Considerations | except that new
emission rates would | No expected changes in regulation except that new emission rates would have to be calculated and modeled | except that new
emission rates would | except that new
emission rates would | No regulations. | Would require water right acquistion. | Would require water right acquisition (e.g., purchase from irrigators). | , Also, insufficient | emissions from wet
cooling towers would | except that new
emission rates would | except that new
emission rates would | except that new emission rates would | No expected
n changes in regulation
except that new
d emission rates would
d have to be calculated
and modeled | different to | Air permit would need to be modified. | Air permit would need to be modified | Solid waste permit would need to be modified to accommodate logistics and handling with waste rock. | Would have to modify permit to accommodate this type of disposal. | TSDF permit. | Would have to per expanded facility accommodate of site disposal. | | Potential Resource
Impacts | Similar to Proposed
Action | Similar to Proposed
Action | Similar to Proposed
Action | Similar to Proposed
Action | Water Resource
impacts. Air impacts
would be minimized
or eliminated. | water resources, | Additional impacts to water resources, fisheries, and other resources from a pipeline. | and water recourses | Additional impacts to | and water resource | and water resource | i. Air emissions would
likely be higher and
solid wastes would
be increased. | Action after air | More impacts would result to air quality because of transportation costs for the fuel. | impacts to water | | similar impacts as
the Proposed Action. | Would increase size
of Waste Rock
Repository | Could aggravate exposure to groundwater impacts | Solid waste off-sit
would result in
slightly higher
environmental
impacts, although
waste stream no
expected to have
measurable effect
groundwater
resources. | | easonable/ Feasible | Not reasonable
because of fuel
transportation costs,
increased cost of
logistics, and would
not meet the purpose
and need for the
Proposed Action. | not meet the stated | not meet the stated | feasible and would
not meet the stated | Not economically feasible and would not meet the stated purpose and need for the Proposed Action. | treatment would | Not reasonable
because of increased
costs of pipeline and
treatment, and
insufficient water
supplies available. | | higher construction
and operation costs
and increased water | Not reasonable
because increased
costs would make
the project infeasible
thus not meeting the
stated purpose and
need. | costs would make
the project infeasible
thus not meeting the | types are designed for different fuel not | Not reasonable because turbines are r designed for different fuel and since adequate supplies of gas are not available, this alternative is not feasible. | purpose and need fo
the Proposed Action
because increased | this technology would
require additional
water and would
result in higher | | | considered and | Is not reasonable
because increased
costs would result in
no benefit. | Not reasonable because of space limitations. |